訂閱
糾錯(cuò)
加入自媒體

ASIC的時(shí)代即將到來?

英偉達(dá)憑借GPU與CUDA生態(tài)構(gòu)筑的護(hù)城河,讓無數(shù)企業(yè)甘愿為高昂的硬件成本與毛利率買單。因?yàn)樵诩夹g(shù)探索期,算力供給的穩(wěn)定性遠(yuǎn)比性價(jià)比重要。

但當(dāng)AI應(yīng)用進(jìn)入規(guī);逃秒A段,那些曾對GPU價(jià)格無動于衷的科技巨頭們,正悄然將目光投向更高效的定制化方案。正如比特幣挖礦從CPU到GPU再到ASIC的演進(jìn)軌跡,當(dāng)算法架構(gòu)逐漸固化,通用計(jì)算芯片的靈活性反而成為桎梏。

云端服務(wù)商對電費(fèi)的敏感度、企業(yè)級客戶對投資回報(bào)率的苛求,都在推動一個(gè)共識:在算力需求爆炸的今天,為特定場景定制的ASIC芯片,或許才是平衡性能與成本的最優(yōu)解。

01大模型算法或進(jìn)入瓶頸期

當(dāng)AI應(yīng)用進(jìn)入規(guī)模化商用階段,成本問題逐漸凸顯:Grok3訓(xùn)練消耗約20萬塊H100 GPU(成本約5.9億美元),ChatGPT5訓(xùn)練成本達(dá)5億美元,遠(yuǎn)超早期GPT3僅140萬美元的投入。這種指數(shù)級增長背后,是Transformer架構(gòu)的局限性:其二次復(fù)雜度Attention機(jī)制導(dǎo)致算力需求劇增,預(yù)訓(xùn)練紅利逐漸觸頂。

大模型的本質(zhì)仍是基于概率權(quán)重的統(tǒng)計(jì)模型,其"幻覺"與表現(xiàn)力的平衡始終是難題。從信息熵的角度看,早期能力提升依賴技術(shù)優(yōu)化,后期則受限于數(shù)據(jù)豐度——Grok3與GPT5的能力已接近當(dāng)前數(shù)據(jù)環(huán)境下的挖掘極限。盡管Transformer架構(gòu)下的能力天花板逐漸顯現(xiàn),但突破現(xiàn)有技術(shù)路線仍充滿不確定性:若新架構(gòu)的起跳標(biāo)準(zhǔn)需超越GPT5,行業(yè)準(zhǔn)入門檻將大幅提高,可能延緩技術(shù)迭代速度。

盡管如此,大模型在垂直領(lǐng)域的應(yīng)用價(jià)值已被驗(yàn)證。在音樂創(chuàng)作、代碼生成等場景中,其效率提升顯著,部分從業(yè)者已借此實(shí)現(xiàn)商業(yè)化。但所謂"統(tǒng)一大模型"的概念正被打破——行業(yè)應(yīng)用工具的定制化開發(fā)或成主流。各行業(yè)龍頭企業(yè)更傾向于在現(xiàn)有工具中嵌入AI模塊,兼顧效率與系統(tǒng)兼容性;對創(chuàng)業(yè)團(tuán)隊(duì)而言,精準(zhǔn)識別細(xì)分需求并落地解決方案更為關(guān)鍵。例如音樂生成領(lǐng)域,僅掌握大模型技術(shù)遠(yuǎn)不夠,還需深度理解音樂特性;To C端則面臨收費(fèi)模式與流量入口的雙重挑戰(zhàn)——巨頭通過免費(fèi)策略控制入口,再以其他業(yè)務(wù)變現(xiàn),中小企業(yè)的突破點(diǎn)更可能集中在To B領(lǐng)域。

當(dāng)前,大模型能力已不再是行業(yè)落地的核心矛盾,如何將技術(shù)優(yōu)勢轉(zhuǎn)化為實(shí)際場景的應(yīng)用價(jià)值,才是決定未來格局的關(guān)鍵。

02ASIC是最優(yōu)解?

如果把芯片世界比作一個(gè)工具箱,那么ASIC就是那個(gè)為特定任務(wù)量身打造的"專業(yè)工匠"。不同于GPU這個(gè)"全能選手"(既能挖礦又能跑AI),ASIC(專用集成電路)從設(shè)計(jì)之初就鎖定單一目標(biāo)——就像專門為擰螺絲設(shè)計(jì)的電動起子,雖然只能擰螺絲,但效率是普通螺絲刀的百倍。

以比特幣挖礦為例,早期礦工用CPU計(jì)算,后來發(fā)現(xiàn)GPU并行計(jì)算能力更強(qiáng),但真正讓挖礦實(shí)現(xiàn)產(chǎn)業(yè)化的,是比特大陸推出的ASIC礦機(jī)。這種芯片把所有電路資源都用于執(zhí)行SHA256哈希算法,就像把整個(gè)芯片變成一臺"算力永動機(jī)",單位能耗的挖礦效率是GPU的千倍級別。這種極致優(yōu)化帶來的結(jié)果是:當(dāng)比特幣網(wǎng)絡(luò)難度飆升時(shí),只有ASIC能保持經(jīng)濟(jì)可行性。

這種特性在AI領(lǐng)域同樣關(guān)鍵。英偉達(dá)GPU雖然能處理各種算法,但運(yùn)行Transformer架構(gòu)時(shí),大量晶體管被用于通用計(jì)算而非特定任務(wù)。就像用瑞士軍刀切菜,雖然能用但遠(yuǎn)不如專業(yè)菜刀高效。而ASIC可以把所有電路資源分配給矩陣乘法、激活函數(shù)等核心操作,理論上能實(shí)現(xiàn)10倍以上的能效比提升。

運(yùn)維成本的差異更直觀。一塊NVIDIA GPU功耗約700瓦,運(yùn)行大模型時(shí)每小時(shí)電費(fèi)約0.56元(按0.8元/度計(jì))。而同等算力的ASIC芯片功耗可控制在200瓦內(nèi),同樣任務(wù)每小時(shí)電費(fèi)僅0.16元。對于需要部署數(shù)萬張卡的云服務(wù)商,這種差距每年可能節(jié)省數(shù)千萬度電——相當(dāng)于一個(gè)小型電廠的年發(fā)電量。

不過ASIC的"專業(yè)病"也很明顯:一旦算法升級或任務(wù)變更,這些定制芯片就可能淪為"電子廢品"。就像專門為膠片相機(jī)設(shè)計(jì)的鏡頭,在數(shù)碼時(shí)代毫無用武之地。因此它更適合算法相對固化的場景,比如云端推理服務(wù)、自動駕駛感知系統(tǒng)等需要長期穩(wěn)定運(yùn)行的任務(wù)。

當(dāng)前AI產(chǎn)業(yè)正面臨關(guān)鍵轉(zhuǎn)折:當(dāng)大模型訓(xùn)練成本從GPT3時(shí)代的千萬級飆升至Grok3的數(shù)十億美元級,連科技巨頭也開始重新評估技術(shù)路線。就像當(dāng)年從CPU轉(zhuǎn)向GPU一樣,現(xiàn)在或許輪到GPU讓位給更專業(yè)的ASIC。

03國內(nèi)設(shè)計(jì)服務(wù)廠商有望受益良多

定制加速計(jì)算芯片(ASIC)正成為AI算力革命的核心驅(qū)動力。據(jù)預(yù)測,2028年全球定制加速計(jì)算芯片市場規(guī)模將達(dá)429億美元,占加速芯片市場的25%,2023-2028年復(fù)合增長率達(dá)45%。這一爆發(fā)式增長源于AI模型對算力需求的指數(shù)級攀升:訓(xùn)練集群已從萬卡級向十萬卡級演進(jìn),而推理集群雖單集群規(guī)模較小,但百萬級部署量將形成更龐大的市場需求。

科技巨頭正加速布局自研ASIC以搶占先機(jī)。谷歌推出第六代TPU Trillium芯片,重點(diǎn)優(yōu)化能效比,計(jì)劃2025年大規(guī)模替代TPU v5,并打破此前僅與博通合作的模式,新增聯(lián)發(fā)科形成雙供應(yīng)鏈,強(qiáng)化先進(jìn)制程布局。亞馬遜AWS以與Marvell聯(lián)合設(shè)計(jì)的Trainium v2為主力,同步開發(fā)Trainium v3,TrendForce預(yù)測其2025年ASIC出貨量增速將居美系云服務(wù)商首位。Meta在首款自研推理芯片MTIA成功部署后,正與博通開發(fā)下一代MTIA v2,聚焦能效與低延遲架構(gòu),適配高度定制化的推理負(fù)載需求。微軟雖仍依賴英偉達(dá)GPU,但自研Maia系列芯片已進(jìn)入迭代階段,Maia v2由GUC負(fù)責(zé)量產(chǎn),并引入Marvell參與進(jìn)階版設(shè)計(jì),分散技術(shù)與供應(yīng)鏈風(fēng)險(xiǎn)。

芯片設(shè)計(jì)廠商亦迎來增長機(jī)遇。博通2025年第二季度AI半導(dǎo)體收入超44億美元,同比增長46%,其定制AI加速器(XPU)業(yè)務(wù)受益于三家客戶百萬級集群部署計(jì)劃,預(yù)計(jì)2026年下半年推理需求將加速釋放。Marvell主導(dǎo)的3nm XPU計(jì)劃已獲得先進(jìn)封裝產(chǎn)能,2026年啟動生產(chǎn),并與第二家超大規(guī)?蛻粽归_迭代合作。國內(nèi)市場同步加速,阿里巴巴平頭哥推出Hanguang 800推理芯片,百度集團(tuán)建成自研萬卡集群(昆侖芯三代P800),騰訊控股通過自研Zixiao芯片與投資燧原科技形成組合方案。

這場變革的本質(zhì)是算力供給從通用走向?qū)I(yè)化的轉(zhuǎn)型。當(dāng)AI應(yīng)用進(jìn)入規(guī)模化落地階段,ASIC憑借針對特定算法的極致優(yōu)化能力,正在重新定義算力經(jīng)濟(jì)的成本結(jié)構(gòu)與技術(shù)路線。

- End -

       原文標(biāo)題 : ASIC的時(shí)代即將到來?

聲明: 本文由入駐維科號的作者撰寫,觀點(diǎn)僅代表作者本人,不代表OFweek立場。如有侵權(quán)或其他問題,請聯(lián)系舉報(bào)。

發(fā)表評論

0條評論,0人參與

請輸入評論內(nèi)容...

請輸入評論/評論長度6~500個(gè)字

您提交的評論過于頻繁,請輸入驗(yàn)證碼繼續(xù)

  • 看不清,點(diǎn)擊換一張  刷新

暫無評論

暫無評論

    掃碼關(guān)注公眾號
    OFweek人工智能網(wǎng)
    獲取更多精彩內(nèi)容
    文章糾錯(cuò)
    x
    *文字標(biāo)題:
    *糾錯(cuò)內(nèi)容:
    聯(lián)系郵箱:
    *驗(yàn) 證 碼:

    粵公網(wǎng)安備 44030502002758號