如何在自定義的數(shù)據(jù)集上訓(xùn)練YOLOv5?
選擇“YOLO v5 Pythorch”當(dāng)出現(xiàn)提示時(shí),一定要選擇“Show Code Snippet”,這將輸出一個(gè)下載curl腳本,這樣你就可以輕松地將數(shù)據(jù)以正確的格式移植到Colab中。curl -L "https://public.roboflow.a(chǎn)i/ds/YOUR-LINK-HERE" > roboflow.zip; unzip roboflow.zip; rm roboflow.zip正在Colab中下載…
下載YOLOv5格式的自定義對(duì)象數(shù)據(jù)集導(dǎo)出將會(huì)創(chuàng)建一個(gè)名為data.yaml的YOLOv5.yaml文件,指定YOLOv5 images文件夾、YOLOv5 labels文件夾的位置以及自定義類的信息。定義YOLOv5模型配置和架構(gòu)接下來(lái),我們?yōu)槲覀兊亩ㄖ茖?duì)象檢測(cè)器編寫一個(gè)模型配置文件。在本教程中,我們選擇了最小、最快的YOLOv5基本模型,你也可以從其他YOLOv5模型中選擇,包括:YOLOv5sYOLOv5mYOLOv5lYOLOv5x你也可以在此步驟中編輯網(wǎng)絡(luò)結(jié)構(gòu),但一般不需要這樣做。以下是YOLOv5模型配置文件,我們將其命名為custom_yolov5s.yaml:nc: 3depth_multiple: 0.33width_multiple: 0.50
anchors: - [10,13, 16,30, 33,23] - [30,61, 62,45, 59,119] - [116,90, 156,198, 373,326]
backbone: [[-1, 1, Focus, [64, 3]], [-1, 1, Conv, [128, 3, 2]], [-1, 3, Bottleneck, [128]], [-1, 1, Conv, [256, 3, 2]], [-1, 9, BottleneckCSP, [256]], [-1, 1, Conv, [512, 3, 2]], [-1, 9, BottleneckCSP, [512]], [-1, 1, Conv, [1024, 3, 2]], [-1, 1, SPP, [1024, [5, 9, 13]]], [-1, 6, BottleneckCSP, [1024]], ]
head: [[-1, 3, BottleneckCSP, [1024, False]], [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], [-2, 1, nn.Upsample, [None, 2, "nearest"]], [[-1, 6], 1, Concat, [1]], [-1, 1, Conv, [512, 1, 1]], [-1, 3, BottleneckCSP, [512, False]], [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]], [-2, 1, nn.Upsample, [None, 2, "nearest"]], [[-1, 4], 1, Concat, [1]], [-1, 1, Conv, [256, 1, 1]], [-1, 3, BottleneckCSP, [256, False]], [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]],
[[], 1, Detect, [nc, anchors]], ]訓(xùn)練定制YOLOv5探測(cè)器我們的data.yaml和custom_yolov5s.yaml文件已經(jīng)準(zhǔn)備好了,我們庫(kù)開(kāi)始訓(xùn)練了!為了開(kāi)始訓(xùn)練,我們使用以下選項(xiàng)運(yùn)行訓(xùn)練命令:img:定義輸入圖像大小batch:確定batch大小epochs:定義epochs。(注:通常,3000+很常見(jiàn)!)data:設(shè)置yaml文件的路徑cfg:指定我們的模型配置weights:指定權(quán)重的自定義路徑。(注意:你可以從Ultralytics Google Drive文件夾下載權(quán)重)name:結(jié)果名稱nosave:只保存最后的檢查點(diǎn)cache:緩存圖像以加快訓(xùn)練速度運(yùn)行訓(xùn)練命令:
訓(xùn)練定制的YOLOv5探測(cè)器。它訓(xùn)練得很快!在訓(xùn)練期間,你可以看 mAP@0.5 來(lái)了解你的探測(cè)器是如何運(yùn)行的,請(qǐng)參閱這篇文章。https://blog.roboflow.a(chǎn)i/what-is-mean-average-precision-object-detection/評(píng)估定制YOLOv5檢測(cè)器的性能現(xiàn)在我們已經(jīng)完成了訓(xùn)練,我們可以通過(guò)查看驗(yàn)證指標(biāo)來(lái)評(píng)估訓(xùn)練過(guò)程的執(zhí)行情況。訓(xùn)練腳本將刪除tensorboard日志,我們將其可視化:

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
最新活動(dòng)更多
-
8月5日立即報(bào)名>> 【在線會(huì)議】CAE優(yōu)化設(shè)計(jì):醫(yī)療器械設(shè)計(jì)的應(yīng)用案例與方案解析
-
8月14日立即報(bào)名>> 【在線研討會(huì)】解析安森美(onsemi)高精度與超低功耗CGM系統(tǒng)解決方案
-
精彩回顧立即查看>> 《2024智能制造產(chǎn)業(yè)高端化、智能化、綠色化發(fā)展藍(lán)皮書》
-
精彩回顧立即查看>> 7月30日- 8月1日 2025全數(shù)會(huì)工業(yè)芯片與傳感儀表展
-
精彩回顧立即查看>> 全數(shù)會(huì)2025(第六屆)機(jī)器人及智能工廠展
-
精彩回顧立即查看>> OFweek 2025 具身機(jī)器人動(dòng)力電池技術(shù)應(yīng)用大會(huì)
推薦專題
- 1 AI產(chǎn)業(yè)的新高度!英偉達(dá)成為全球首家市值破4萬(wàn)億美元的公司
- 2 傳魏建軍與賈躍亭合作,長(zhǎng)城汽車出海美國(guó)
- 3 一文讀懂:到底什么是 “具身智能” ?
- 4 黃仁勛:與雷軍長(zhǎng)期合作,共探AI智駕
- 5 具身智能泡沫爭(zhēng)議下,華映資本尋找「穿越周期者」
- 6 中國(guó)平安們欲靠AI守“陣地”
- 7 官宣:智元機(jī)器人借殼上市,A股人形機(jī)器人第一股!
- 8 華為讓渡“三界”銷售主導(dǎo)權(quán),智界高管:終于能全力奔跑了
- 9 借仿生手實(shí)現(xiàn)突圍,國(guó)產(chǎn)靈巧手破局“不可能三角”
- 10 DeepSeek R2加持,中國(guó)AI與芯片產(chǎn)業(yè)迎來(lái)新一輪協(xié)同進(jìn)化