使用Python+OpenCV+Dlib實(shí)現(xiàn)人臉檢測(cè)與人臉特征關(guān)鍵點(diǎn)識(shí)別
今天,我們將學(xué)習(xí)如何檢測(cè)圖像中的人臉并提取面部特征,如眼睛、鼻子、嘴巴等。我們可以將這些信息作為一個(gè)預(yù)處理步驟來(lái)完成,例如捕捉照片中人物的人臉(手動(dòng)或通過(guò)機(jī)器學(xué)習(xí)),創(chuàng)建效果來(lái)“增強(qiáng)”我們的圖像(類(lèi)似于Snapchat等應(yīng)用程序中的效果),對(duì)人臉進(jìn)行情感分析等等。今天我們將通過(guò)引入DLib和從圖像中提取面部特征來(lái)將其提升到一個(gè)新的水平。相關(guān)閱讀:https://towardsdatascience.com/essential-opencv-functions-to-get-you-started-into-computer-vision-743df932e60Dlib是一個(gè)高級(jí)的機(jī)器學(xué)習(xí)庫(kù),它是為解決復(fù)雜的現(xiàn)實(shí)世界問(wèn)題而創(chuàng)建的。這個(gè)庫(kù)是用C++編程語(yǔ)言創(chuàng)建的,它與C/C++、Python和java一起工作。Dlib:http://dlib.net/值得注意的是,本教程可能需要對(duì)OpenCV庫(kù)有一定的了解,例如如何處理圖像、打開(kāi)相機(jī)、圖像處理和一些小技巧。它是如何工作的?我們的臉有幾個(gè)可以識(shí)別的特征,比如眼睛、嘴巴、鼻子等等。當(dāng)我們使用DLib算法檢測(cè)這些特征時(shí),我們實(shí)際上得到了每個(gè)特征點(diǎn)的映射。該映射由67個(gè)點(diǎn)(稱(chēng)為地標(biāo)點(diǎn))組成,可識(shí)別以下特征:
顎點(diǎn)= 0–16右眉點(diǎn)= 17–21左眉點(diǎn)= 22–26鼻點(diǎn)= 27–35右眼點(diǎn)= 36–41左眼點(diǎn)= 42–47口角= 48–60嘴唇分?jǐn)?shù)= 61–67現(xiàn)在讓我們來(lái)了解如何提取特征。安裝要求與往常一樣,本文將用代碼演示示例,并將逐步指導(dǎo)你實(shí)現(xiàn)一個(gè)完整的人臉特征識(shí)別示例。但是在開(kāi)始之前,你需要啟動(dòng)一個(gè)新的Python項(xiàng)目并安裝3個(gè)不同的庫(kù):opencv pythondlib如果像我一樣使用pipenv,可以使用以下命令安裝所有這些文件:pipenv install opencv-python, dlib如果你使用的是Mac和某些版本的Linux,則在安裝dlib時(shí)可能會(huì)遇到一些問(wèn)題,如果遇到的是編譯錯(cuò)誤,請(qǐng)檢查使用的CMake庫(kù)版本。在Mac中,確保你有可用的CMake,并且使用正確的版本運(yùn)行:brew install cmake對(duì)于其他操作系統(tǒng),請(qǐng)?jiān)诰檢查以獲得特定支持。步驟1:載入并顯示圖片我們將從小處著手并以代碼為基礎(chǔ),直到有一個(gè)可以正常工作的示例為止。通常,我喜歡使用繪圖來(lái)渲染圖像,但是由于我們?cè)谥蟮奈恼轮袦?zhǔn)備了一些很酷的東西,因此我們將做一些不同的事情,并且將創(chuàng)建一個(gè)窗口來(lái)展示我們的工作結(jié)果。讓我們一起看看代碼吧!import cv2# read the imageimg = cv2.imread("face.jpg")# show the imagecv2.imshow(winname="Face", mat=img)# Wait for a key press to exitcv2.waitKey(delay=0)# Close all windowscv2.destroyAllWindows()很簡(jiǎn)單,對(duì)吧?我們只是用imread加載圖像,然后告訴OpenCV在winname中顯示圖像,這將打開(kāi)窗口并給它一個(gè)標(biāo)題。之后,我們需要暫停執(zhí)行,因?yàn)楫?dāng)腳本停止時(shí),窗口會(huì)被破壞,所以我們使用cv2.waitKey來(lái)保持窗口,直到按下某個(gè)鍵,然后銷(xiāo)毀窗口并退出腳本。如果使用代碼并在代碼目錄中添加了一個(gè)名為face.jpg的圖像,你應(yīng)該得到如下內(nèi)容:原始圖像:
步驟2:人臉識(shí)別到目前為止,我們還沒(méi)有對(duì)圖像做任何處理,只是把它呈現(xiàn)在一個(gè)窗口中,這是非常無(wú)聊的,但是現(xiàn)在我們將開(kāi)始加入其它的內(nèi)容,我們將從識(shí)別圖像中選擇一張臉開(kāi)始。為此,我們將使用名為get_frontial_face_detector()的Dlib函數(shù),非常直觀,但是有一個(gè)警告提示這個(gè)函數(shù)只適用于灰度圖像,所以我們必須首先使用OpenCV。get_frontial_face_detector()會(huì)返回一個(gè)檢測(cè)器,該檢測(cè)器是一個(gè)我們可以用來(lái)檢索人臉信息的函數(shù),每個(gè)面都是一個(gè)對(duì)象,其中包含可以找到圖像的位置點(diǎn)。但我們最好在代碼上看看:import cv2import dlib# Load the detectordetector = dlib.get_frontal_face_detector()# read the imageimg = cv2.imread("face.jpg")# Convert image into grayscalegray = cv2.cvtColor(src=img, code=cv2.COLOR_BGR2GRAY)# Use detector to find landmarksfaces = detector(gray)for face in faces: x1 = face.left() # left point y1 = face.top() # top point x2 = face.right() # right point y2 = face.bottom() # bottom point # Draw a rectangle cv2.rectangle(img=img, pt1=(x1, y1), pt2=(x2, y2), color=(0, 255, 0), thickness=4)# show the imagecv2.imshow(winname="Face", mat=img)# Wait for a key press to exitcv2.waitKey(delay=0)# Close all windowscv2.destroyAllWindows()上面的代碼將從圖像中檢索所有面部,并在每個(gè)面部上渲染一個(gè)矩形,從而產(chǎn)生如下圖像:

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
圖片新聞
最新活動(dòng)更多
-
8月5日立即報(bào)名>> 【在線會(huì)議】CAE優(yōu)化設(shè)計(jì):醫(yī)療器械設(shè)計(jì)的應(yīng)用案例與方案解析
-
8月14日立即報(bào)名>> 【在線研討會(huì)】解析安森美(onsemi)高精度與超低功耗CGM系統(tǒng)解決方案
-
精彩回顧立即查看>> 《2024智能制造產(chǎn)業(yè)高端化、智能化、綠色化發(fā)展藍(lán)皮書(shū)》
-
精彩回顧立即查看>> 7月30日- 8月1日 2025全數(shù)會(huì)工業(yè)芯片與傳感儀表展
-
精彩回顧立即查看>> 全數(shù)會(huì)2025(第六屆)機(jī)器人及智能工廠展
-
精彩回顧立即查看>> OFweek 2025 具身機(jī)器人動(dòng)力電池技術(shù)應(yīng)用大會(huì)
推薦專(zhuān)題
- 1 AI產(chǎn)業(yè)的新高度!英偉達(dá)成為全球首家市值破4萬(wàn)億美元的公司
- 2 傳魏建軍與賈躍亭合作,長(zhǎng)城汽車(chē)出海美國(guó)
- 3 一文讀懂:到底什么是 “具身智能” ?
- 4 黃仁勛:與雷軍長(zhǎng)期合作,共探AI智駕
- 5 具身智能泡沫爭(zhēng)議下,華映資本尋找「穿越周期者」
- 6 中國(guó)平安們欲靠AI守“陣地”
- 7 官宣:智元機(jī)器人借殼上市,A股人形機(jī)器人第一股!
- 8 華為讓渡“三界”銷(xiāo)售主導(dǎo)權(quán),智界高管:終于能全力奔跑了
- 9 借仿生手實(shí)現(xiàn)突圍,國(guó)產(chǎn)靈巧手破局“不可能三角”
- 10 DeepSeek R2加持,中國(guó)AI與芯片產(chǎn)業(yè)迎來(lái)新一輪協(xié)同進(jìn)化