行為克隆 | 自動(dòng)駕駛汽車的端到端學(xué)習(xí)
研究人員將使用udacity提供的模擬器,模擬車前部配有3個(gè)攝像頭,可記錄視頻以及與中央攝像頭對(duì)應(yīng)的轉(zhuǎn)向角。
行為克隆的本質(zhì)是克隆了驅(qū)動(dòng)程序的行為。本文的實(shí)驗(yàn)思路是根據(jù)駕駛員駕駛的訓(xùn)練數(shù)據(jù)訓(xùn)練卷積神經(jīng)網(wǎng)絡(luò)(CNN)以模擬駕駛員。
NVIDIA曾發(fā)布了一篇題為End to End Learning for Self-DrivingCars 的文章,他們訓(xùn)練CNN將原始像素從單個(gè)前置攝像頭直接映射到轉(zhuǎn)向命令。實(shí)驗(yàn)結(jié)果令人非常震驚,汽車學(xué)會(huì)了在有或沒有車道標(biāo)記的地方道路上或者在具有最少量訓(xùn)練數(shù)據(jù)的高速公路上行駛。本次實(shí)驗(yàn),研究人員將使用udacity提供的模擬器,模擬車前部配有3個(gè)攝像頭,可記錄視頻以及與中央攝像頭對(duì)應(yīng)的轉(zhuǎn)向角。
收集數(shù)據(jù)
模擬器有2個(gè)通道:第一個(gè)通道非常容易,曲線較小且很少,第二個(gè)通道很難,有許多曲線和陡峭的山坡。
研究人員將使用來自兩個(gè)軌道的訓(xùn)練數(shù)據(jù):
1.研究人員將駕駛兩條車道,將車保持在車道的中心位置。研究人員每人開車2圈。
2.研究人員將在兩條車道上各開一圈,并試圖漂移到兩側(cè),或試圖轉(zhuǎn)向車道的中心。這將為研究人員提供模型校正的訓(xùn)練數(shù)據(jù)。
圖分別為左、中、右視角
捕獲的數(shù)據(jù)包含左圖像,中心圖像和右圖像的路徑,轉(zhuǎn)向角度,油門,中斷和速度值。
注意:研究人員將使用所有左,中,右圖像。研究人員將通過一些調(diào)整來矯正left_image的轉(zhuǎn)向角度。同樣,研究人員將通過一些調(diào)整來矯正right_image的轉(zhuǎn)向角度。
數(shù)據(jù)不平衡
轉(zhuǎn)向角直方圖
上面的直方圖顯示了訓(xùn)練數(shù)據(jù)的不平衡。左轉(zhuǎn)彎的數(shù)據(jù)多于右轉(zhuǎn)彎的數(shù)據(jù)。研究人員將通過隨機(jī)翻轉(zhuǎn)訓(xùn)練圖像并將轉(zhuǎn)向角度調(diào)整為steering_angle來補(bǔ)償這一點(diǎn)。
此外,大多數(shù)轉(zhuǎn)向角集中在0-0.25左右,研究人員沒有太多的數(shù)據(jù)來獲得更大的轉(zhuǎn)向角。研究人員將通過一些像素水平和垂直地隨機(jī)移動(dòng)圖像并相應(yīng)地調(diào)整轉(zhuǎn)向角來補(bǔ)償這一點(diǎn)。
數(shù)據(jù)擴(kuò)充
研究人員使用以下增補(bǔ):
1.隨機(jī)翻轉(zhuǎn)一些圖像并將轉(zhuǎn)向角度調(diào)整為steering_angle
2.通過一些像素水平和垂直地隨機(jī)移動(dòng)圖像,并使用小的調(diào)整因子調(diào)整轉(zhuǎn)向角度。
3.路上有樹木,柱子等陰影。因此,研究人員將為訓(xùn)練圖像添加一些陰影。4.研究人員會(huì)隨機(jī)調(diào)整圖像的亮度。
以上這些是標(biāo)準(zhǔn)的OpenCV調(diào)整,代碼可以在GitHub存儲(chǔ)庫中找到。(詳見文末鏈接)
應(yīng)用增強(qiáng)后,下面是一些訓(xùn)練圖像的輸出。
前處理
本文期望圖像的輸入尺寸為66 * 200 * 3,而來自訓(xùn)練的圖像尺寸為160 * 320 * 3。此外,紙張期望將輸入圖像從RGB轉(zhuǎn)換為YUV顏色空間。因此,研究人員將從輸入圖像裁剪上部40像素行和下部20像素行。此外,作為預(yù)處理的一部分,研究人員將裁剪的圖像大小調(diào)整為66 * 200 * 3大小并將其轉(zhuǎn)換為YUV色彩空間。
模型
這是本文中描述的PilotNet模型:

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
最新活動(dòng)更多
-
8月5日立即報(bào)名>> 【在線會(huì)議】CAE優(yōu)化設(shè)計(jì):醫(yī)療器械設(shè)計(jì)的應(yīng)用案例與方案解析
-
8月14日立即報(bào)名>> 【在線研討會(huì)】解析安森美(onsemi)高精度與超低功耗CGM系統(tǒng)解決方案
-
精彩回顧立即查看>> 《2024智能制造產(chǎn)業(yè)高端化、智能化、綠色化發(fā)展藍(lán)皮書》
-
精彩回顧立即查看>> 7月30日- 8月1日 2025全數(shù)會(huì)工業(yè)芯片與傳感儀表展
-
精彩回顧立即查看>> 全數(shù)會(huì)2025(第六屆)機(jī)器人及智能工廠展
-
精彩回顧立即查看>> OFweek 2025 具身機(jī)器人動(dòng)力電池技術(shù)應(yīng)用大會(huì)
推薦專題
- 1 AI產(chǎn)業(yè)的新高度!英偉達(dá)成為全球首家市值破4萬億美元的公司
- 2 傳魏建軍與賈躍亭合作,長(zhǎng)城汽車出海美國
- 3 一文讀懂:到底什么是 “具身智能” ?
- 4 黃仁勛:與雷軍長(zhǎng)期合作,共探AI智駕
- 5 具身智能泡沫爭(zhēng)議下,華映資本尋找「穿越周期者」
- 6 中國平安們欲靠AI守“陣地”
- 7 官宣:智元機(jī)器人借殼上市,A股人形機(jī)器人第一股!
- 8 華為讓渡“三界”銷售主導(dǎo)權(quán),智界高管:終于能全力奔跑了
- 9 借仿生手實(shí)現(xiàn)突圍,國產(chǎn)靈巧手破局“不可能三角”
- 10 DeepSeek R2加持,中國AI與芯片產(chǎn)業(yè)迎來新一輪協(xié)同進(jìn)化