使用DriverPower識別癌癥driver基因的綜合負荷和功能影響測試
今天跟大家分享的是2020年發(fā)表在Nat.Commun .(IF:12.121)雜志上的一篇文章Combined burden and functional impact tests for cancer driver discovery using DriverPower.在文章中作者描述了一種新的高靈敏度算法DriverPower,用于在全基因組和外顯子組測序數(shù)據(jù)中識別區(qū)分癌癥的驅(qū)動和乘客突變。
Combined burden and functional impact tests for cancer driver discovery using DriverPower
使用DriverPower識別癌癥driver基因的綜合負荷和功能影響測試
(分享者:科研菌-碎碎冰)
一.研究背景
與癌癥發(fā)生發(fā)展相關的重要基因被稱為“驅(qū)動基因(driver基因)”,這種基因決定了癌癥的走向:當driver基因發(fā)生突變后,癌細胞就會活躍起來。driver基因突變占腫瘤中體細胞變異比例少,而且在大多數(shù)癌癥中,腫瘤內(nèi)和腫瘤間存在明顯的異質(zhì)性,背景突變率(BMR)都可能存在數(shù)個數(shù)量級的差異。此外,大規(guī)模癌癥全基因組測序WGS的出現(xiàn)為人們探索driver基因在非編碼區(qū)中的作用成為可能。但由于突變對基因組非編碼區(qū)的影響人們了解甚少,所以也有不小的挑戰(zhàn)。大多數(shù)最新技術(shù)通過突變負荷測試(通過將基因組區(qū)域中觀察到的突變率與BMR預期的突變率進行比較)或功能影響測試來檢測陽性選擇信號,從而識別driver基因。由此作者團隊開發(fā)DriverPower算法——使用突變負荷和功能影響評分來識別編碼和非編碼癌癥driver基因。
二.分析流程
三.結(jié)果解讀
1.建立BMR模型
作者首先從PCAWG項目獲得WGS體細胞變異數(shù)據(jù)。在所有腫瘤隊列中,作者觀察到在組織,供體以及基因座水平上的突變率存在很大差異。driver基因突變檢測的精確性需要準確估計整個腫瘤基因組中的BMR(背景突變率),此外還需要考慮到腫瘤類型、供體和基因組區(qū)域之間的廣泛差異(圖S1)。DriverPower通過使用與局部BMR共同變化的基因組特征,來建立BMR模型從而解決這個問題。
圖S1.隊列和供體水平的異質(zhì)性
背景知識:
目前通過體細胞突變識別癌癥driver基因的分析方法主要有兩種:①背景突變率(BMR)法和②背景突變比例度量法。背景突變率方法的思想是,評估一個基因在癌癥樣本中是否含有比預期更多的體細胞突變;诒嚷蕼y量的方法是通過考察一個基因中不同種類體細胞突變數(shù)的比例來探測癌癥driver基因。
作者研究了兩種基于基因組特征的BMR建模算法。第一個算法是首先先使用隨機lasso,然后是運用二項式廣義線性模型(GLM),第二種算法則是基于梯度提升機(GBM,一種非線性且非參數(shù)的樹集成算法)的算法。為了評估這兩種BMR建模算法,通過隨機采樣基因組坐標,制作了不重疊的1兆堿基對(Mbp)常染色體元件(n = 2521)和訓練基因組元件(n = 867,266)。然后使用五重交叉驗證(cross validation,CV)來預測每個元件的突變數(shù)。

請輸入評論內(nèi)容...
請輸入評論/評論長度6~500個字
圖片新聞
技術(shù)文庫
最新活動更多
- 1 藥明康德狠狠打了市場的臉
- 2 泰恩康股價突破40元大關,醫(yī)藥領域的“神藥敘事”為何總有奇效?
- 3 預計半年營收超63億元,CXO行業(yè)升溫了,康龍化成的“沸點”又在哪?
- 4 邁威生物躍過“J曲線”的轉(zhuǎn)折點
- 5 人形機器人靈巧手行至何處?
- 6 PROTAC:20年磨一劍,破解癌癥"不可成藥"靶點!
- 7 上海跑出未來獨角獸:AI+腫瘤營養(yǎng)康復管理,全國首家
- 8 高盛發(fā)聲:中國創(chuàng)新藥價值重估時代來臨
- 9 腫瘤微環(huán)境中的有害代謝產(chǎn)物
- 10 醫(yī)用光學技術(shù)之三,AI驅(qū)動多模態(tài)內(nèi)窺鏡成像與飛秒激光消融