OpenCV:直方圖均衡
步驟:
第 1 步:手動均衡
第 2 步:通過使用 OpenCV 函數(shù)
什么是圖像直方圖?
它是圖像強(qiáng)度分布的圖形表示。它量化了所考慮的每個強(qiáng)度值的像素?cái)?shù)。
第 1 步:手動均衡
%matplotlib inline
from IPython.display import display, Math, Latex
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
img = Image.open('DATA/einstein.jpg')
plt.imshow(img)
輸出:
顯示彩色圖像
將圖像轉(zhuǎn)換為 numpy 數(shù)組,以便 OpenCV 可以使用:
img = np.a(chǎn)sanyarray(img)
img.shape
輸出:
(2354, 2560, 3)
將 RGB 轉(zhuǎn)換為灰度:
import cv2
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img.shape
輸出:
(2354, 2560)
顯示圖像:
plt.imshow(img, cmap='gray')
輸出:
我們現(xiàn)在知道如何處理直方圖了
img.max()
輸出:
255
img.min()
輸出:
0
img.shape
輸出:
(2354, 2560)
把它展平:
flat = img.flatten()
# 1 row 2354 x 2560 = 6.026.240
flat.shape
輸出:
(6026240,)
顯示直方圖
plt.hist(flat, bins=50)
請注意,灰度值在某個值周圍分布很差
什么是直方圖均衡?
為了更清楚,從上圖中,你可以看到像素似乎聚集在可用強(qiáng)度范圍的中間。直方圖均衡所做的就是擴(kuò)大這個范圍。
# formula for creating the histogram
display(Math(r'P_x(j) = sum_{i=0}^{j} P_x(i)'))
# create our own histogram function
def get_histogram(image, bins):
# array with size of bins, set to zeros
histogram = np.zeros(bins)
# loop through pixels and sum up counts of pixels
for pixel in image:
histogram[pixel] += 1
# return our final result
return histogram
hist = get_histogram(flat, 256)
plt.plot(hist)
[
# create our cumulative sum function
def cumsum(a):
a = iter(a)
b = [next(a)]
for i in a:
b.a(chǎn)ppend(b[-1] + i)
return np.a(chǎn)rray(b)
# execute the fn
cs = cumsum(hist)
# display the result
plt.plot(cs)
[
# formula to calculate cumulation sum
display(Math(r's_k = sum_{j=0}^{k} {rac{n_j}{N}}'))
# re-normalize cumsum values to be between 0-255
# numerator & denomenator
nj = (cs - cs.min()) * 255
N = cs.max() - cs.min()
# re-normalize the cdf
cs = nj / N
plt.plot(cs)
[
Casting:
# cast it back to uint8 since we can't use floating point values in imagescs =
cs.a(chǎn)stype('uint8')
plt.plot(cs)
輸出:
[
獲取 CDF:
# get the value from cumulative sum for every index in flat, and set that as img_new
img_new = cs[flat]
# we see a much more evenly distributed histogram
plt.hist(img_new, bins=50)
它是如何工作的?
均衡意味著將一個分布(給定的直方圖)映射到另一個分布(強(qiáng)度值的更廣泛和更均勻的分布),因此強(qiáng)度值分布在整個范圍內(nèi)。
# get the value from cumulative sum for every index in flat, and set that as img_new
img_new = cs[flat]
# we see a much more evenly distributed histogram
plt.hist(img_new, bins=50)
# put array back into original shape since we flattened it
img_new = np.reshape(img_new, img.shape)
img_new
輸出:
array([[233, 231, 228, ..., 216, 216, 215],
[233, 230, 228, ..., 215, 215, 214],
[233, 231, 229, ..., 213, 213, 212],
...,
[115, 107, 96, ..., 180, 187, 194],
[111, 103, 93, ..., 187, 189, 192],
[111, 103, 93, ..., 187, 189, 192]], dtype=uint8)
一探究竟:
# set up side-by-side image display
fig = plt.figure()
fig.set_figheight(15)
fig.set_figwidth(15)
fig.a(chǎn)dd_subplot(1,2,1)
plt.imshow(img, cmap='gray')
# display the new image
fig.a(chǎn)dd_subplot(1,2,2)
plt.imshow(img_new, cmap='gray')
plt.show(block=True)
使用 OpenCV equalizeHist(img) 方法
第 2 步:通過使用 OpenCV 函數(shù)
# Reading image via OpenCV and Equalize it right away!
img = cv2.imread('DATA/einstein.jpg',0)
equ = cv2.equalizeHist(img)
準(zhǔn)備好!這就是你需要做的!
fig = plt.figure()
fig.set_figheight(15)
fig.set_figwidth(15)
fig.a(chǎn)dd_subplot(1,2,1)
plt.imshow(img, cmap='gray')
# display the Equalized (equ) image
fig.a(chǎn)dd_subplot(1,2,2)
plt.imshow(equ, cmap='gray')
plt.show(block=True)
print("That?s it! Thank you once again!I hope will be helpful.")
輸出:
That?s it! Thank you once again!
I hope will be helpful.
原文標(biāo)題 : OpenCV:直方圖均衡

發(fā)表評論
請輸入評論內(nèi)容...
請輸入評論/評論長度6~500個字
最新活動更多
-
8月5日立即報(bào)名>> 【在線會議】CAE優(yōu)化設(shè)計(jì):醫(yī)療器械設(shè)計(jì)的應(yīng)用案例與方案解析
-
8月14日立即報(bào)名>> 【在線研討會】解析安森美(onsemi)高精度與超低功耗CGM系統(tǒng)解決方案
-
精彩回顧立即查看>> 《2024智能制造產(chǎn)業(yè)高端化、智能化、綠色化發(fā)展藍(lán)皮書》
-
精彩回顧立即查看>> 7月30日- 8月1日 2025全數(shù)會工業(yè)芯片與傳感儀表展
-
精彩回顧立即查看>> 全數(shù)會2025(第六屆)機(jī)器人及智能工廠展
-
精彩回顧立即查看>> OFweek 2025 具身機(jī)器人動力電池技術(shù)應(yīng)用大會
推薦專題
- 1 AI產(chǎn)業(yè)的新高度!英偉達(dá)成為全球首家市值破4萬億美元的公司
- 2 傳魏建軍與賈躍亭合作,長城汽車出海美國
- 3 一文讀懂:到底什么是 “具身智能” ?
- 4 黃仁勛:與雷軍長期合作,共探AI智駕
- 5 具身智能泡沫爭議下,華映資本尋找「穿越周期者」
- 6 中國平安們欲靠AI守“陣地”
- 7 官宣:智元機(jī)器人借殼上市,A股人形機(jī)器人第一股!
- 8 華為讓渡“三界”銷售主導(dǎo)權(quán),智界高管:終于能全力奔跑了
- 9 借仿生手實(shí)現(xiàn)突圍,國產(chǎn)靈巧手破局“不可能三角”
- 10 DeepSeek R2加持,中國AI與芯片產(chǎn)業(yè)迎來新一輪協(xié)同進(jìn)化