深蘭科技摘得“圖表信息提取競賽”總成績的冠軍
在日前結(jié)束的第25屆國際模式識別會議(ICPR2020)上,深蘭科技DeepBlueAI團隊同臺競技聯(lián)想、華南理工、合合等隊伍,摘得“圖表信息提取競賽”總成績的冠軍。
該競賽由6個賽道7個子任務(wù)組成,其中賽道6有兩個子任務(wù),每個子任務(wù)又分Adobe Synth、UB PMC兩個數(shù)據(jù)集。7個子任務(wù)按照數(shù)據(jù)集單獨計分,最終按照總分進行排名。最終,DeepBlueAI團隊拿下4個賽道冠軍,以總分35分拿到總成績第一名。
ICPR2020圖表信息提取
競賽冠軍方案
該比賽各任務(wù)涵蓋圖表分類、案例分析、圖元素提取等,數(shù)據(jù)類別存在著分布極為不均衡的問題。
7個賽道分別為:賽道一,圖表分類;賽道二,檢測并識別圖表中的文字區(qū)域;賽道三,識別圖表圖像中文本功能/角色;賽道四,對坐標(biāo)軸上刻度點進行檢測并與刻度標(biāo)簽文本框關(guān)聯(lián);賽道五,關(guān)聯(lián)圖例標(biāo)簽文本與圖例樣式元素;賽道六,第一個子任務(wù)對圖表元素進行檢測與分類,第二個子任務(wù)提取用于生成圖表圖像的原始數(shù)據(jù)。
下面對比較有競爭力的三、四、五、六賽道的解決方案進行技術(shù)分享。
賽道三
賽道三以文本位置和文本內(nèi)容為輸入,識別圖表圖像中每個文本的角色,6個類別如圖所示。我們的方法包括兩個步驟:特征提取和分類器分類。使用文本屬性來定義特征向量,使用的分類器是Random Forest [1]和LightGBM [2]。
特征由文本框?qū)傩院臀谋緝?nèi)容組成,這些特征可分為三組。第一組包含框的長寬比、文本是否為數(shù)字、文本是否為多行、文本角度、文本長度和圖表類型。第二組包括文本框的三種相對位置信息,也就是相對于全局邊框、原點和圖例的位置。第三組包含水平/垂直對齊文本框的數(shù)量和對齊文本框的水平/垂直范圍,判斷框是否對齊時,分別使用文本框的中心點、左上角和右下角。
使用隨機森林和LightGBM對文本角色進行分類。隨機森林的一個優(yōu)點是在缺少特征的情況下仍然具有良好的性能,LightGBM具有訓(xùn)練效率高、精度高等優(yōu)點。在訓(xùn)練模型時,每個類別的損失權(quán)重與輸入數(shù)據(jù)的頻率成反比。

請輸入評論內(nèi)容...
請輸入評論/評論長度6~500個字
最新活動更多
-
8月5日立即報名>> 【在線會議】CAE優(yōu)化設(shè)計:醫(yī)療器械設(shè)計的應(yīng)用案例與方案解析
-
8月14日立即報名>> 【在線研討會】解析安森美(onsemi)高精度與超低功耗CGM系統(tǒng)解決方案
-
精彩回顧立即查看>> 《2024智能制造產(chǎn)業(yè)高端化、智能化、綠色化發(fā)展藍皮書》
-
精彩回顧立即查看>> 7月30日- 8月1日 2025全數(shù)會工業(yè)芯片與傳感儀表展
-
精彩回顧立即查看>> 全數(shù)會2025(第六屆)機器人及智能工廠展
-
精彩回顧立即查看>> OFweek 2025 具身機器人動力電池技術(shù)應(yīng)用大會
推薦專題
- 1 AI產(chǎn)業(yè)的新高度!英偉達成為全球首家市值破4萬億美元的公司
- 2 傳魏建軍與賈躍亭合作,長城汽車出海美國
- 3 一文讀懂:到底什么是 “具身智能” ?
- 4 黃仁勛:與雷軍長期合作,共探AI智駕
- 5 具身智能泡沫爭議下,華映資本尋找「穿越周期者」
- 6 中國平安們欲靠AI守“陣地”
- 7 官宣:智元機器人借殼上市,A股人形機器人第一股!
- 8 華為讓渡“三界”銷售主導(dǎo)權(quán),智界高管:終于能全力奔跑了
- 9 借仿生手實現(xiàn)突圍,國產(chǎn)靈巧手破局“不可能三角”
- 10 DeepSeek R2加持,中國AI與芯片產(chǎn)業(yè)迎來新一輪協(xié)同進化