谷歌研發(fā)新型人工智能系統(tǒng),助力研究員繪制神經(jīng)元
《Nature Methods》刊登了谷歌的一篇新論文《使用Flood-Filling網(wǎng)絡(luò)高效自動重建神經(jīng)元》(High-Precision automated reconstruction of neurons with flood-filling networks)。在這篇論文中,谷歌講述了他們所創(chuàng)建的人工智能系統(tǒng),是如何幫助神經(jīng)學家更好理解大腦結(jié)構(gòu)和功能的。
在人類的大腦中,大概包含了約860億個通過100億個突觸聯(lián)網(wǎng)的神經(jīng)元,如果對單個立方毫米神經(jīng)元進行成像,最后能夠產(chǎn)生超過1000TB的數(shù)據(jù)。而如果神經(jīng)科學家要對這些進行全部標注的話,這可能需要10萬個小時。
針對這方面,谷歌與馬克斯普朗克研究所的研究員一起合作打造了一個人工智能系統(tǒng),只需要7天的訓練,這一系統(tǒng)就能夠完成與上面一樣的工作。
在以往的做法中,研究員會使用邊緣檢測算法先行識別神經(jīng)節(jié)之間的邊界,繼而用wateshed或graph cut等算法將未被邊界分割的圖像像素組合在一起。與之不同,谷歌與馬克斯普朗克研究所提出的“floor-filling Networks”模型將傳統(tǒng)的兩個步驟合成一個步驟。
具體來講,新算法會從特定像素位置開始生長,并使用循環(huán)卷積神經(jīng)網(wǎng)絡(luò)不斷填充一個區(qū)域,進而預測哪些像素和初始像素屬于同一物體。
眾所周知,在提到智能性的時候,我們常常會提到對“人類大腦”的研究,因為這是讓人工智能更為“智能”的關(guān)鍵,而對大腦的認知不足也阻礙了人們的研究進展。
這方面,谷歌的這一新成果提供了一大幫助。“這個項目真正影響的是可以完成的神經(jīng)科學研究的數(shù)量,能夠以全面的方式研究大腦中神經(jīng)元的實際模式,這是歷史上神經(jīng)科學家所無法實現(xiàn)的!惫雀柩芯繂T、論文主要作者維綸·賈恩(Viren Jain)表示。

請輸入評論內(nèi)容...
請輸入評論/評論長度6~500個字
最新活動更多
-
8月5日立即報名>> 【在線會議】CAE優(yōu)化設(shè)計:醫(yī)療器械設(shè)計的應(yīng)用案例與方案解析
-
8月14日立即報名>> 【在線研討會】解析安森美(onsemi)高精度與超低功耗CGM系統(tǒng)解決方案
-
精彩回顧立即查看>> 《2024智能制造產(chǎn)業(yè)高端化、智能化、綠色化發(fā)展藍皮書》
-
精彩回顧立即查看>> 7月30日- 8月1日 2025全數(shù)會工業(yè)芯片與傳感儀表展
-
精彩回顧立即查看>> 全數(shù)會2025(第六屆)機器人及智能工廠展
-
精彩回顧立即查看>> OFweek 2025 具身機器人動力電池技術(shù)應(yīng)用大會
推薦專題
- 1 AI產(chǎn)業(yè)的新高度!英偉達成為全球首家市值破4萬億美元的公司
- 2 傳魏建軍與賈躍亭合作,長城汽車出海美國
- 3 一文讀懂:到底什么是 “具身智能” ?
- 4 黃仁勛:與雷軍長期合作,共探AI智駕
- 5 具身智能泡沫爭議下,華映資本尋找「穿越周期者」
- 6 中國平安們欲靠AI守“陣地”
- 7 官宣:智元機器人借殼上市,A股人形機器人第一股!
- 8 華為讓渡“三界”銷售主導權(quán),智界高管:終于能全力奔跑了
- 9 借仿生手實現(xiàn)突圍,國產(chǎn)靈巧手破局“不可能三角”
- 10 DeepSeek R2加持,中國AI與芯片產(chǎn)業(yè)迎來新一輪協(xié)同進化